Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams
نویسنده
چکیده
Since the proposal of Zadeh and Mamdani’s seminal ideas, interpretability is acknowledged as one of the most appreciated and valuable characteristics of fuzzy system identification methodologies. It represents the ability of fuzzy systems to formalize the behavior of a real system in a human understandable way. Interpretability analysis involves two main points of view: readability of the knowledge base description (regarding complexity of fuzzy partitions and rules) and comprehensibility of the fuzzy system (regarding implicit and explicit semantics embedded in fuzzy partitions and rules, but also the fuzzy reasoning method). Readability has been thoroughly treated by many authors who have proposed several criteria and metrics. Unfortunately, comprehensibility has almost never been considered because it involves some cognitive aspects related to the human reasoning which are very hard to formalize and to deal with. This paper proposes the creation of fuzzy systems’ inference maps, so-called fuzzy inference-grams (fingrams) by analogy with scientograms used for visualizing the structure of science. Fingrams show graphically the interaction between rules at the inference level in terms of co-fired rules, i.e., rules fired at the same time by a given input vector. The analysis of fingrams offers many possibilities: measuring the comprehensibility of fuzzy systems, detecting redundancies and/or inconsistencies among fuzzy rules, discovering the most significant rules, etc. Some of these capabilities are explored in this initial work.
منابع مشابه
Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE
Understand the behavior of Fuzzy Rule-based Systems (FRBSs) at inference level is a complex task that allows the designer to produce simpler and powerful systems. The fuzzy inference-grams –known as fingrams– establish a novel and mighty tool for understanding the structure and behavior of fuzzy systems. Fingrams represent FRBSs as social networks made of nodes representing fuzzy rules and edge...
متن کاملUnderstanding the Inference Mechanism of FURIA by means of Fingrams
This paper shows the use of Fingrams –Fuzzy Inference-grams– aimed at unveiling graphically some hidden details in the usual behavior of the precise fuzzy modeling algorithm FURIA –Fuzzy Unordered Rule Induction Algorithm–. FURIA is recognized as one of the most outstanding fuzzy rule-based classification methods attending to accuracy. Although FURIA usually produces compact rule bases, with lo...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملRule Base and Inference System Cooperative Learning of Mamdani Fuzzy Systems with Multiobjective Genetic Algorithms
In this paper, we present an evolutionary multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler, more compact and still accurate linguistic fuzzy models by learning fuzzy inference operators together with Rule Base. The Multiobjective Evolutionary Algorithm proposed generates a set of Fuzzy Rule Based Systems with diff...
متن کاملCooperation between the Inference System and the Rule Base by Using Multiobjective Genetic Algorithms
This paper presents an evolutionary Multiobjective learning model achieving positive synergy between the Inference System and the Rule Base in order to obtain simpler and still accurate linguistic fuzzy models by learning fuzzy inference operators and applying rule selection. The Fuzzy Rule Based Systems obtained in this way, have a better trade-off between interpretability and accuracy in ling...
متن کامل